3.249 \(\int \frac{1}{x (d+e x^2) (a+c x^4)^2} \, dx\)

Optimal. Leaf size=209 \[ -\frac{c d \left (2 a e^2+c d^2\right ) \log \left (a+c x^4\right )}{4 a^2 \left (a e^2+c d^2\right )^2}-\frac{\sqrt{c} e \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 a^{3/2} \left (a e^2+c d^2\right )}+\frac{\log (x)}{a^2 d}+\frac{c \left (d-e x^2\right )}{4 a \left (a+c x^4\right ) \left (a e^2+c d^2\right )}-\frac{e^4 \log \left (d+e x^2\right )}{2 d \left (a e^2+c d^2\right )^2}-\frac{\sqrt{c} e^3 \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \left (a e^2+c d^2\right )^2} \]

[Out]

(c*(d - e*x^2))/(4*a*(c*d^2 + a*e^2)*(a + c*x^4)) - (Sqrt[c]*e^3*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(2*Sqrt[a]*(c*
d^2 + a*e^2)^2) - (Sqrt[c]*e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(4*a^(3/2)*(c*d^2 + a*e^2)) + Log[x]/(a^2*d) - (e^
4*Log[d + e*x^2])/(2*d*(c*d^2 + a*e^2)^2) - (c*d*(c*d^2 + 2*a*e^2)*Log[a + c*x^4])/(4*a^2*(c*d^2 + a*e^2)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.239187, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {1252, 894, 639, 205, 635, 260} \[ -\frac{c d \left (2 a e^2+c d^2\right ) \log \left (a+c x^4\right )}{4 a^2 \left (a e^2+c d^2\right )^2}-\frac{\sqrt{c} e \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 a^{3/2} \left (a e^2+c d^2\right )}+\frac{\log (x)}{a^2 d}+\frac{c \left (d-e x^2\right )}{4 a \left (a+c x^4\right ) \left (a e^2+c d^2\right )}-\frac{e^4 \log \left (d+e x^2\right )}{2 d \left (a e^2+c d^2\right )^2}-\frac{\sqrt{c} e^3 \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \left (a e^2+c d^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(d + e*x^2)*(a + c*x^4)^2),x]

[Out]

(c*(d - e*x^2))/(4*a*(c*d^2 + a*e^2)*(a + c*x^4)) - (Sqrt[c]*e^3*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(2*Sqrt[a]*(c*
d^2 + a*e^2)^2) - (Sqrt[c]*e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(4*a^(3/2)*(c*d^2 + a*e^2)) + Log[x]/(a^2*d) - (e^
4*Log[d + e*x^2])/(2*d*(c*d^2 + a*e^2)^2) - (c*d*(c*d^2 + 2*a*e^2)*Log[a + c*x^4])/(4*a^2*(c*d^2 + a*e^2)^2)

Rule 1252

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 894

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 639

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*e - c*d*x)*(a + c*x^2)^(p + 1))/(2*a
*c*(p + 1)), x] + Dist[(d*(2*p + 3))/(2*a*(p + 1)), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x]
&& LtQ[p, -1] && NeQ[p, -3/2]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{1}{x \left (d+e x^2\right ) \left (a+c x^4\right )^2} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x (d+e x) \left (a+c x^2\right )^2} \, dx,x,x^2\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{1}{a^2 d x}-\frac{e^5}{d \left (c d^2+a e^2\right )^2 (d+e x)}-\frac{c (a e+c d x)}{a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^2}+\frac{c \left (-a^2 e^3-c d \left (c d^2+2 a e^2\right ) x\right )}{a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )}\right ) \, dx,x,x^2\right )\\ &=\frac{\log (x)}{a^2 d}-\frac{e^4 \log \left (d+e x^2\right )}{2 d \left (c d^2+a e^2\right )^2}+\frac{c \operatorname{Subst}\left (\int \frac{-a^2 e^3-c d \left (c d^2+2 a e^2\right ) x}{a+c x^2} \, dx,x,x^2\right )}{2 a^2 \left (c d^2+a e^2\right )^2}-\frac{c \operatorname{Subst}\left (\int \frac{a e+c d x}{\left (a+c x^2\right )^2} \, dx,x,x^2\right )}{2 a \left (c d^2+a e^2\right )}\\ &=\frac{c \left (d-e x^2\right )}{4 a \left (c d^2+a e^2\right ) \left (a+c x^4\right )}+\frac{\log (x)}{a^2 d}-\frac{e^4 \log \left (d+e x^2\right )}{2 d \left (c d^2+a e^2\right )^2}-\frac{\left (c e^3\right ) \operatorname{Subst}\left (\int \frac{1}{a+c x^2} \, dx,x,x^2\right )}{2 \left (c d^2+a e^2\right )^2}-\frac{(c e) \operatorname{Subst}\left (\int \frac{1}{a+c x^2} \, dx,x,x^2\right )}{4 a \left (c d^2+a e^2\right )}-\frac{\left (c^2 d \left (c d^2+2 a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{x}{a+c x^2} \, dx,x,x^2\right )}{2 a^2 \left (c d^2+a e^2\right )^2}\\ &=\frac{c \left (d-e x^2\right )}{4 a \left (c d^2+a e^2\right ) \left (a+c x^4\right )}-\frac{\sqrt{c} e^3 \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \left (c d^2+a e^2\right )^2}-\frac{\sqrt{c} e \tan ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{a}}\right )}{4 a^{3/2} \left (c d^2+a e^2\right )}+\frac{\log (x)}{a^2 d}-\frac{e^4 \log \left (d+e x^2\right )}{2 d \left (c d^2+a e^2\right )^2}-\frac{c d \left (c d^2+2 a e^2\right ) \log \left (a+c x^4\right )}{4 a^2 \left (c d^2+a e^2\right )^2}\\ \end{align*}

Mathematica [A]  time = 0.195079, size = 241, normalized size = 1.15 \[ \frac{-2 a^2 e^4 \left (a+c x^4\right ) \log \left (d+e x^2\right )+a c d \left (d-e x^2\right ) \left (a e^2+c d^2\right )+4 \log (x) \left (a+c x^4\right ) \left (a e^2+c d^2\right )^2-c d^2 \left (a+c x^4\right ) \left (2 a e^2+c d^2\right ) \log \left (a+c x^4\right )+\sqrt{a} \sqrt{c} d e \left (a+c x^4\right ) \left (3 a e^2+c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+\sqrt{a} \sqrt{c} d e \left (a+c x^4\right ) \left (3 a e^2+c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{4 a^2 d \left (a+c x^4\right ) \left (a e^2+c d^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(d + e*x^2)*(a + c*x^4)^2),x]

[Out]

(a*c*d*(c*d^2 + a*e^2)*(d - e*x^2) + Sqrt[a]*Sqrt[c]*d*e*(c*d^2 + 3*a*e^2)*(a + c*x^4)*ArcTan[1 - (Sqrt[2]*c^(
1/4)*x)/a^(1/4)] + Sqrt[a]*Sqrt[c]*d*e*(c*d^2 + 3*a*e^2)*(a + c*x^4)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] +
 4*(c*d^2 + a*e^2)^2*(a + c*x^4)*Log[x] - 2*a^2*e^4*(a + c*x^4)*Log[d + e*x^2] - c*d^2*(c*d^2 + 2*a*e^2)*(a +
c*x^4)*Log[a + c*x^4])/(4*a^2*d*(c*d^2 + a*e^2)^2*(a + c*x^4))

________________________________________________________________________________________

Maple [A]  time = 0.022, size = 309, normalized size = 1.5 \begin{align*} -{\frac{{e}^{3}c{x}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2} \left ( c{x}^{4}+a \right ) }}-{\frac{{c}^{2}{x}^{2}e{d}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}a \left ( c{x}^{4}+a \right ) }}+{\frac{cd{e}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2} \left ( c{x}^{4}+a \right ) }}+{\frac{{c}^{2}{d}^{3}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}a \left ( c{x}^{4}+a \right ) }}-{\frac{c\ln \left ( c{x}^{4}+a \right ){e}^{2}d}{2\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}a}}-{\frac{{c}^{2}\ln \left ( c{x}^{4}+a \right ){d}^{3}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}{a}^{2}}}-{\frac{3\,{e}^{3}c}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}}\arctan \left ({c{x}^{2}{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}}-{\frac{e{c}^{2}{d}^{2}}{4\, \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}a}\arctan \left ({c{x}^{2}{\frac{1}{\sqrt{ac}}}} \right ){\frac{1}{\sqrt{ac}}}}+{\frac{\ln \left ( x \right ) }{d{a}^{2}}}-{\frac{{e}^{4}\ln \left ( e{x}^{2}+d \right ) }{2\,d \left ( a{e}^{2}+c{d}^{2} \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*x^2+d)/(c*x^4+a)^2,x)

[Out]

-1/4*c/(a*e^2+c*d^2)^2/(c*x^4+a)*e^3*x^2-1/4*c^2/(a*e^2+c*d^2)^2/a/(c*x^4+a)*x^2*e*d^2+1/4*c/(a*e^2+c*d^2)^2/(
c*x^4+a)*d*e^2+1/4*c^2/(a*e^2+c*d^2)^2/a/(c*x^4+a)*d^3-1/2*c/(a*e^2+c*d^2)^2/a*ln(c*x^4+a)*e^2*d-1/4*c^2/(a*e^
2+c*d^2)^2/a^2*ln(c*x^4+a)*d^3-3/4*c/(a*e^2+c*d^2)^2/(a*c)^(1/2)*arctan(c*x^2/(a*c)^(1/2))*e^3-1/4*c^2/(a*e^2+
c*d^2)^2/a/(a*c)^(1/2)*arctan(c*x^2/(a*c)^(1/2))*e*d^2+ln(x)/a^2/d-1/2*e^4*ln(e*x^2+d)/d/(a*e^2+c*d^2)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x^2+d)/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x^2+d)/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x**2+d)/(c*x**4+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.07542, size = 377, normalized size = 1.8 \begin{align*} -\frac{{\left (c^{2} d^{3} + 2 \, a c d e^{2}\right )} \log \left (c x^{4} + a\right )}{4 \,{\left (a^{2} c^{2} d^{4} + 2 \, a^{3} c d^{2} e^{2} + a^{4} e^{4}\right )}} - \frac{e^{5} \log \left ({\left | x^{2} e + d \right |}\right )}{2 \,{\left (c^{2} d^{5} e + 2 \, a c d^{3} e^{3} + a^{2} d e^{5}\right )}} - \frac{{\left (c^{2} d^{2} e + 3 \, a c e^{3}\right )} \arctan \left (\frac{c x^{2}}{\sqrt{a c}}\right )}{4 \,{\left (a c^{2} d^{4} + 2 \, a^{2} c d^{2} e^{2} + a^{3} e^{4}\right )} \sqrt{a c}} + \frac{c^{3} d^{3} x^{4} + 2 \, a c^{2} d x^{4} e^{2} - a c^{2} d^{2} x^{2} e + 2 \, a c^{2} d^{3} - a^{2} c x^{2} e^{3} + 3 \, a^{2} c d e^{2}}{4 \,{\left (a^{2} c^{2} d^{4} + 2 \, a^{3} c d^{2} e^{2} + a^{4} e^{4}\right )}{\left (c x^{4} + a\right )}} + \frac{\log \left (x^{2}\right )}{2 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x^2+d)/(c*x^4+a)^2,x, algorithm="giac")

[Out]

-1/4*(c^2*d^3 + 2*a*c*d*e^2)*log(c*x^4 + a)/(a^2*c^2*d^4 + 2*a^3*c*d^2*e^2 + a^4*e^4) - 1/2*e^5*log(abs(x^2*e
+ d))/(c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5) - 1/4*(c^2*d^2*e + 3*a*c*e^3)*arctan(c*x^2/sqrt(a*c))/((a*c^2*d^
4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(a*c)) + 1/4*(c^3*d^3*x^4 + 2*a*c^2*d*x^4*e^2 - a*c^2*d^2*x^2*e + 2*a*c^2*d
^3 - a^2*c*x^2*e^3 + 3*a^2*c*d*e^2)/((a^2*c^2*d^4 + 2*a^3*c*d^2*e^2 + a^4*e^4)*(c*x^4 + a)) + 1/2*log(x^2)/(a^
2*d)